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Abstract. An interference scheme is proposed for studying the spatial entanglement of twin photons. By
Fourier transformation, phase and frequency matching takes the form of spatial and temporal entanglement,
respectively. We use a description in space and time to show the analogy between the spatial and temporal
entanglement of twin photons.

PACS. 03.67.Mn Entanglement production, characterization and manipulation – 42.50.Dv Nonclassical
states of the electromagnetic field, including entangled photon states; quantum state engineering and
measurements – 42.65.Lm Parametric down conversion and production of entangled photons

1 Introduction

Entanglement of two separate parts of a quantum system
implies that a measurement on one subsystem affects the
state vector of the other one. Twin photons are often used
for the study of entanglement. They are mostly created
by the process of spontaneous parametric down-conversion
(SPDC), by a pump pulse in a nonlinear crystal. Polar-
ization entanglement of the photons of a twin has been
studied thoroughly. In many experiments with twin pho-
tons it was found that the Bell inequalities are violated,
showing that the photons of the twins are entangled [1]. It
has recently been demonstrated that this entanglement is
still present after the two photons have been transmitted
by a metal screen with a periodic pattern of perforations,
where the photons have been converted into surface plas-
mons [2]. In the case of polarization entanglement, the two
subsystems have a two-dimensional state space. The en-
tanglement of two particles with eigenspaces larger than
the two-dimensional polarization space has been studied
only recently. Vaziri et al. have demonstrated the entan-
glement of orbital angular momentum in an experiment
with twin photons [3].

Twin photons can also be entangled in continuous de-
grees of freedom, such as frequency or transversal wave
vector. Frequency entanglement takes the form of time
entanglement after Fourier transformation to the time
domain. Most theoretical descriptions of SPDC involve
summations over plane-wave modes, characterized by fre-
quency and wave vector. However, in many situations a
description in terms of field operators that depend on time
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and transversal space more closely follows the actual life
of the two photons from their creation to their detection.
This can make the description more transparent. An ex-
ample is the experiment by Hong et al. [4], where it is
shown that the two photons of a twin arriving one in each
input channel of a beam splitter at the same instant exit
in the same output channel. This shows up as a destruc-
tive interference in the coincidence rate. This experiment
is described in terms of integrals over wave vectors and fre-
quencies of the emitted photons. The condition for inter-
ference that the two photons must arrive simultaneously at
the beam splitter is brought out more clearly by a formu-
lation in the domain of space and time [5]. An equivalent
experiment, with two independent photons from two sep-
arate emitters, has been studied recently [6]. Franson [7]
proposed an experiment where the photons of a twin can
both take a short and a long path to the detector. As
a consequence of temporal entanglement, there is inter-
ference between the two amplitudes where both take the
long, or both take the short path. This cannot be under-
stood as interference between single photons, only as an
interference between two different histories of the photon
pair. The proposed experiment has been realized by Tittel
et al. [8]. The same argument holds for the experiment of
Pittman et al. [9], who show that for interference to occur
it is not necessary that the photons of a twin arrive at
the beam splitter at the same instant. In this experiment
the two photons are created with orthogonal polarization,
and a polarization-dependent delay is imposed, so that the
photons do not arrive at the beam splitter simultaneously.
As a consequence of the polarization-dependent delay, the
arrival times of the photons at the detectors generally con-
tain information on the polarization. The temporal entan-
glement of the twin photons is then exploited to erase this
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information, so that interference with 100% visibility is
recovered. Viewed in the time domain, these experiments
rely on the fact that the photons of a twin are created
at the same instant of time, but where the exact time of
creation of the twin is undetermined.

We point out that, apart from temporal entanglement,
the photons of a twin can also be spatially entangled. After
Fourier transformation to the transversal space, entangle-
ment of the transversal wave vector takes the form of spa-
tial entanglement. Due to the local nature of the nonlinear
interaction in the crystal, the photons of a twin are cre-
ated at the same instant of time and at the same position.
The two-photon state is a linear superposition of states
corresponding to different times of creation, which are un-
determined within the duration of the pump pulse. The
same holds for the location in the crystal. The photons
of a twin are created at the same location in the crystal,
but this location is undetermined within the pump spot
on the crystal.

In Section 2 we give a general expression for the two-
photon state created by SPDC. In Section 3 we propose
an experiment for studying the spatial entanglement of
twin photons. This experiment is the spatial equivalent
of an experiment by Pittman et al. [9], which we discuss
in Section 4. For both experiments we calculate the two-
photon state and the coincidence detection rates. We use
a description in the space and time domain, which more
closely follows the life of the photons in the experiment.
Another advantage is that then the analogy between tem-
poral and spatial entanglement is much more evident.

2 Two-photon state

In the process of SPDC twin photons are created by a
pump beam in a nonlinear crystal at one point and one
time instant. The amplitude for the creation of a twin at
time t and position �r in the crystal is proportional to the
positive-frequency part of the electric field of the classical
pump beam Ep(�r, t). We assume that the pump beam and
the photons of the twin have a common direction of prop-
agation, which we call the z-direction. In the x–y-plane,
or transversal plane, the crystal is much larger than the
pump spot. The output plane of the crystal is located at
z = 0 and we write

Ep(�r, t)|z=0 = g(t)G(�ρ), (1)

where g(t) is the pulse shape, and G(�ρ) the transversal
profile of the pump beam. The two-dimensional vector
�ρ = (x, y) is the transversal coordinate.

For the basis of polarization we take the eigenvectors
{�εH , �εV } as determined by the crystal birefringence and
the propagation direction of the pump beam. By using a
pinhole twins are selected that propagate collinearly with
the pump beam. The orientation of the crystal with re-
spect to the propagation direction of the pump beam and
polarization of the pump beam are chosen such that the
amplitude for the photons of the twin to have orthogonal

polarizations is much larger than the amplitude for identi-
cal polarizations: we have type-II phase matching. Because
the crystal is birefringent, the speed and direction of prop-
agation of a photon inside the crystal is polarization de-
pendent. The resulting walk-offs can be compensated by
using compensating crystals [1]. After compensation the
two-photon state in the interaction picture can be writ-
ten as

|Ψ(t)〉 ∝
∫ t

−∞
dt′g(t′)

∫
d�ρ G(�ρ)â†

H(�ρ, t′)â†
V (�ρ, t′)|0〉, (2)

where â†
H(�ρ, t) and â†

V (�ρ, t) create an H-polarized and a
V -polarized photon, respectively, at time t, and transver-
sal coordinate �ρ. The state |0〉 is the vacuum state. The
expression for the two-photon state is only valid when the
dispersion in the crystal can be neglected. This is the
case when the spectrum of the pulse shape g(t) is nar-
row band, and the photons of the twins are detected with
a well-determined frequency, which is at the cost of the
brightness of the parametric down-conversion. When these
conditions are relaxed, the brightness increases, but the
visibility in an interference experiment is reduced because
of dispersion in the crystal [10,11]. Since we study the
entanglement of the twin photons using two-photon inter-
ference, a large visibility is favored over a large brightness.
The operators â†

i (�ρ, t) with i = H, V can be assumed to
satisfy the commutation relation

[ai(�ρ, t), a†
j(�ρ

′, t′)] = δijδ(�ρ − �ρ ′)δ(t − t′), (3)

where i, j = H, V [12]. Note that we describe the pro-
cess in the domain of time t and transversal position �ρ,
rather than the more common picture of frequency ω and
transversal wave vector �κ. These pictures are related by
Fourier transformations as

âi(�ρ, t) =
1

(2π)3/2

∫
dω

∫
d�κ âi(�κ, ω) exp (i�κ · �ρ − iωt),

(4)
where the momentum-frequency field operators âi(�κ, ω)
obey the commutation relation

[âi(�κ, ω), â†
j(�κ

′, ω′)] = δijδ(�κ − �κ′)δ(ω − ω′). (5)

Notice that the photon state can be perfectly localized in
the transversal plane [13]. With the definitions

G̃(�κ) =
1

(2π)2

∫
d�ρ G(�ρ) exp (−i�κ · �ρ), (6)

g̃(ω, t) =
1
2π

∫ t

∞
dt′ g(t′) exp (iωt′), (7)

the two-photon state in equation (2) can be written as

|Ψ(t)〉 ∝
∫

d�κ

∫
d�κ′ G̃(�κ + �κ′)

∫
dω

×
∫

dω′ g̃(ω + ω′, t) â†
H(�κ, ω)â†

V (�κ′, ω′)|0〉. (8)
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In this expression we recognize the conservation of energy
and transversal momentum, which is equivalent to the fact
that the two photons are created at the same location and
the same instant of time.

After propagation through an optical system, which
might contain several optical elements, the photons of
the twins are detected in coincidence by two detectors a
and b. These detectors detect photons behind linear po-
larizers, and integrate over time and over the transver-
sal location in the detector plane. A component of the
positive-frequency part of the electric-field operator at
the transversal coordinate �ρa in the detection plane of
detector a at time ta is written as Ê+

a (�ρa, ta). For de-
tector b we write Ê+

b (�ρb, tb). These operators can be ex-
pressed in terms of the annihilation operators âi(�ρ, t),
where i = H, V . These expressions depend on the trans-
fer functions of the optical systems. The transversal part
of the transfer function describes the evolution of the
transversal profile of a light field when it propagates from
the crystal plane to the detector plane. It is frequency
dependent, but since a narrowband filter is used, it is jus-
tified to fix this frequency at the center frequency of the
filter. As a consequence, the transfer function factorizes in
a transversal and a longitudinal, or temporal part.

The amplitude where detector a detects a photon at
time ta and position �ρa, and detector b detects a photon
at time tb and position �ρb, is given by

A = 〈0|Ê+
b (�ρb, tb)Ê+

a (�ρa, ta)|Ψ(ta)〉, (9)

where tb > ta. We shall now consider separately cases
where either the spatial entanglement or the temporal en-
tanglement is responsible for interference.

3 Spatial entanglement

3.1 Spatial interferometer

We use the interference scheme in Figure 1 to study spa-
tial entanglement. A pump beam creates twin photons in
a nonlinear crystal by the process of SPDC. The orienta-
tion of the crystal with respect to the propagation direc-
tion of the pump beam and the polarization of the pump
beam are such, that the twin photons that propagate
collinearly have orthogonal polarization. The walk-offs
that result from the birefringence of the crystal, are com-
pensated by compensating crystals. For simplicity they
are not shown in the picture. A pinhole is used to select
collinear twins. The crystal birefringence together with
the direction of propagation defines a unique basis for the
polarization, consisting of the unit vectors �εH and �εV . A
translation ∆�sV in the transversal direction is imposed
on V -polarized photons. This is done by propagation of
the beam through a tilted birefringent crystal. Then also
a time difference between H- and V -polarized photons
results, introducing polarization information in the ar-
rival time of the photons at the detectors. This polariza-
tion information can be erased by propagation through a
compensating crystal with the appropriate thickness. The

Fig. 1. Scheme of the spatial interferometer. The pump beam
creates twin photons in a nonlinear crystal. Collinear twins
with orthogonal polarizations are selected with a pinhole. On
V -polarized photons a transversal translation ∆�sV is imposed.
Then the beam falls on a beam splitter. In one of the out-
put channels a transversal translation ∆�sH is imposed on
H-polarized photons. The detectors a and b detect coincidences
in the two output channels. In front of both detectors is a nar-
rowband filter and a linear polarizer at 45◦. There is a pinhole
in front of detector b.

collinear twins fall on a 50%:50% beam splitter. In one
of the output channels a translation ∆�sH is imposed in
the transversal direction on H-polarized photons. Coinci-
dences are detected by the detectors a and b in the out-
put channels. In front of both detectors are narrowband
filters and linear polarizers set to transmit when the po-
larization is at an angle of 45◦ with respect to both �εH

and �εV . The narrowband filters have a center frequency of
half the frequency of the pump beam. The detectors are
bucket detectors that integrate both over the time and
the transversal space. In front of detector b is also a circu-
lar aperture with radius d. For this setup the coincidence
detection rate is considered as a function of the transla-
tion ∆�sH for fixed value of ∆�sV . Now two amplitudes are
relevant. The first is the amplitude that the H-polarized
photon is detected by detector a and the V -polarized pho-
ton is detected by detector b. For the second amplitude it
is the other way around. It is necessary that the polarizers
are both at 45◦, because then the information about the
polarization is completely erased, and these amplitudes
can interfere.

3.2 The coincidence detection rate

In Section 2 we argued that the transfer functions that
describe the propagation from the crystal to the detec-
tor, factorize in transversal and temporal parts. In the
interferometer in Figure 1 there are no optical elements
that introduce any polarization dependence in the tempo-
ral properties. As a consequence the temporal part of the
problem drops out, and we can write the two-photon state
in equation (2) as

|Ψ〉 ∝
∫

d�ρ G(�ρ)â†
H(�ρ)â†

V (�ρ)|0〉, (10)
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where â†
H(�ρ) and â†

V (�ρ) create a photon at the transversal
position �ρ in the crystal plane, with H and V polarization,
respectively. For simplicity the translation ∆�sV is imposed
at the output plane of the crystal, and the translation ∆�sH

is imposed immediately behind the output plane of the
beam splitter. The detectors are both at a distance z from
the crystal along the optical lines. The transfer function
for free space propagation over a distance z is given by

hf (�ρ, �ρ ′; z) =
k

2πz
exp

[
ik

2z
(�ρ − �ρ ′)2

]
, (11)

where k is the wave number of the light. We consider as
an example the transfer function for the propagation from
the output plane of the crystal to the detection plane of
detector a for a beam with H polarization. We split up the
optical line in two parts with lengths z1 and z2, where the
first part stretches from the crystal plane to the output
plane of the beam splitter, and the second from the lat-
ter plane to the detector plane. The vectors �ρ, �ρ ′, and �ρa

refer to a point in the plane of the crystal, beam split-
ter, and detector, respectively. Then the transfer function
for the propagation from the crystal to detector a for an
H-polarized beam is given by

∫
d�ρ ′hf (�ρa, �ρ ′ + ∆�sH ; z2)hf (�ρ ′, �ρ; z1) =

hf (�ρa, �ρ + ∆�sH ; z), (12)

where z = z1 + z2. We have ignored that the beam split-
ter changes the handedness of the basis of the transversal
space. We see that for the transfer function it is not rele-
vant in which plane the translation ∆�sH is imposed. Now
we can express the positive-frequency parts of the electric-
field operators in the detector planes in terms of the an-
nihilation operators âH(�ρ) and âV (�ρ), that annihilate a
photon at the location �ρ in the detector plane with H
and V polarization, respectively. Because the polarizers
in front of the detectors are at 45◦, only photons with po-
larization vector (�εH +�εV )/

√
2 are detected. Therefore we

only consider the component of the electric-field operator
in the 45◦ direction. We have

Ê+
a (�ρa) =

∫
d�ρ [hf(�ρa, �ρ + ∆�sH ; z)âH(�ρ)

+ hf (�ρa, �ρ + ∆�sV ; z)âV (�ρ)] ,

Ê+
b (�ρb) =

∫
d�ρ [hf(�ρb, �ρ; z)âH(�ρ)

+ hf (�ρb, �ρ + ∆�sV ; z)âV (�ρ)] . (13)

By using equation (10) and the commutation rules in
equation (3) we find that the coincidence detection am-

plitude in equation (9) is given by

A(�ρa, �ρb) = 〈0|Ê+
a (�ρa)Ê+

b (�ρb)|Ψ〉

=
∫

d�ρ G(�ρ)hf (�ρa, �ρ + ∆�sH ; z)

× hf (�ρb, �ρ + ∆�sV ; z)

+
∫

d�ρ G(�ρ)hf (�ρa, �ρ + ∆�sV ; z)hf(�ρb, �ρ; z),

(14)

where only the cross products ∝ âH âV from Ê+
a Ê+

b con-
tribute. The coincidence detection rate is given by

R =
∫

d�ρa

∫
II

d�ρb |A(�ρa, �ρb)|2, (15)

where II indicates that the integration domain is over the
opening of pinhole II. We perform the integration over �ρa

and use unitarity of the transfer function for free space
propagation:∫

d�ρ hf (�ρ2, �ρ; z)h∗
f (�ρ, �ρ1; z) = δ (�ρ2 − �ρ1) . (16)

We then find that

R =
k2d2

2πz2

∫
d�ρ |G(�ρ)|2

+ 2Re
∫

d�ρ G(�ρ)G∗(�ρ + ∆�sV − ∆�sH)

×
∫

II

d�ρb hf (�ρb, �ρ; z)h∗
f(�ρb, �ρ + 2∆�sV − ∆�sH ; z). (17)

For the integration over �ρb we use the property
∫

II

d�ρ ′hf (�ρ ′, �ρ + ∆�s/2; z)h∗
f(�ρ ′, �ρ − ∆�s/2; z) =

kd

2πz‖∆�s‖J1(kd‖∆�s‖/z) exp [ik�ρ · ∆�s/z], (18)

where

Jn(x) =
1

2πin

∫ 2π

0

dφ exp (ix cosφ + inφ)

n = 0, 1, 2, ... (19)

are the Bessel functions of the first kind. By using this
property we find that

R ∝ 1
2

∫
d�ρ |G(�ρ)|2 +

z

kd‖∆�s‖J1(kd‖∆�s‖/z)

× Re
∫

d�ρ exp (ik�ρ · ∆�s/z)G(�ρ + ∆�s/2)G∗(�ρ − ∆�sH/2),

(20)

where ∆�s = ∆�sH − 2∆�sV . To see interference fringes,
the exponential factor inside the integral must oscillate at
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Fig. 2. Coincidence detection rate R as a function of the
x-component of ∆�sH −2∆�sV for a Gaussian pump beam tilted
at 0.6◦. The intensity of the pump beam drops off to 1/e at
a distance of 3 mm from the beam axis. The wavelength of
the pump beam is 400 nm. The distance from the crystal to
the detectors is 2 m. For the radius of the pinhole in front of
detector b we have d = 3 mm. The value of the x-component
of ∆�sV is fixed at 0.1 mm.

least once over the range of the pump spot, which puts a
lower bound on ‖∆�s‖. The visibility of the fringes is de-
termined by the factor in front of the integral, which puts
an upper bound on the radius d of pinhole II. As a con-
sequence, to see interference fringes the spot size must in
general not be smaller than the size of pinhole II. As an
example we use a Gaussian function for the pump beam
profile G(�ρ). In order to obtain interference fringes, we
assume that the pump beam is slightly tilted, such that
the propagation direction is in the x–z-plane. Then the
profile of the pump beam has a phase pattern. The trans-
lations ∆�sH and ∆�sV are imposed in the x-direction. In
Figure 2 the coincidence detection rate is given for this
case as a function of the x-component of ∆�sH for fixed
value of ∆�sV . We see in Figure 2 that for ∆�sH = 2∆�sV the
visibility is 100%. The reason for this can be understood
by considering again the two relevant amplitudes, that
we discussed at the end of Section 3.1. We first consider
the amplitude A(H → a; V → b) where the H-polarized
photon is detected by detector a, and the V -polarized
photon by detector b. These photons are translated by
∆�sH − ∆�sV with respect to each other. For the ampli-
tude A(H → b; V → a) where the H- and the V -polarized
photon are detected by detector b and a, respectively, the
photons are translated by ∆�sV with respect to each other.
Since in front of the detector there is a linear polarizer
at 45◦, the information about the polarization is erased.
As a consequence, these two amplitudes are indistinguish-
able when the polarization is concerned. For interference
with maximum visibility, the two amplitudes must also
be indistinguishable concerning their spatial properties.
This is the case when, for the two amplitudes, the vectors
over which the H- and V -polarized photon are translated
with respect to each other, are identical. That is, when
∆�sH = 2∆�sV , indeed. Under this condition there might
still be another spatial property that distinguishes the two
amplitudes. For the amplitude A(H → a; V → b) one pho-

Fig. 3. The two relevant amplitudes for the case that
∆�sH = 2∆�sV , where the location of birth of the twin pho-
tons for the amplitude A(H → a;V → b) in (a) differs by
∆�sV with respect to the location of birth for the amplitude
A(H → b; V → a) in (b). The thick lines are the optical axes
of the system and the paths of the photons are dashed. We see
that for both amplitudes the location at detector a at which
a photon arrives, is the same, but that the polarization of the
photon is different. The same holds for the photon arriving at
detector b. Nevertheless, the two amplitudes are indistinguish-
able since the polarizers in front of both detectors erase the
information about the polarization.

ton is translated by ∆�sV , and the other by 2∆�sV , while
for the amplitude A(H → b; V → a) the translations are 0
and ∆�sV . The relative translation is the same for both,
but the absolute translations are different. The reason that
the visibility is 100% anyway, is because of the spatial en-
tanglement: the photons of the twins are created at the
same location in the crystal, but this location itself is un-
determined within the spot size of the pump beam on the
crystal. Therefore, when ∆�sV is small with respect to the
spot size, the two amplitudes cannot be distinguished by
a difference in the absolute translation mentioned above.
This can be seen in Figure 3, where the location of birth
of the twin photons for the amplitude A(H → a; V → b)
differs by ∆�sV with respect to the location of birth for
the amplitude A(H → b; V → a). Then the two ampli-
tudes cannot be distinguished. The width of the envelope
in Figure 2 depends on the radius of the pinhole in front of
detector b. A smaller pinhole radius decreases the spatial
distinguishability of the detector. Because the detector is
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Fig. 4. Scheme of the temporal interferometer. The pump
beam creates twin photons in a nonlinear crystal. A pin-
hole selects collinear twins with orthogonal polarization. On
V -polarized photons a delay ∆τV is imposed. Then the beam
falls on a beam splitter. In one of the output channels a de-
lay ∆τH is imposed on H-polarized photons. Coincidences are
detected by the detectors a and b in the two output channels.
In front of both detectors is a narrowband filter and a linear
polarizer at 45◦.

then less able to obtain spatial information, the width of
the envelope becomes larger.

By imposing the translation ∆�sH on H-polarized pho-
tons the spatial information introduced by the transla-
tion ∆�sV on the V polarization can be erased. In Figure 1
we see that the erasing is done in one of the output chan-
nels of the beam splitter. The condition for erasing is then
that there must be spatial entanglement. The information
can also be erased by imposing a translation ∆�sH = ∆�sV

on H-polarized photons before the beam splitter. Then
spatial entanglement is not necessary, because before the
beam splitter the collinear twins are not polarization en-
tangled. Erasing behind the beam splitter without using
spatial entanglement can be done by imposing the transla-
tion ∆�sH = ∆�sV on H-polarized photons in both output
channels of the beam splitter.

4 Temporal entanglement

The interference scheme that we discussed in Section 3
is the spatial analogue of the interference scheme in an
experiment of Pittman et al. [9] where delays instead of
transversal translations are imposed. For the spatial in-
terferometer the spatial entanglement of the twin photons
is necessary, while for the temporal interferometer it is
the temporal entanglement of the twin photons. We show
that the temporal interferometer of Pittman et al. is sim-
ilar to the spatial interferometer. For this we calculate
the coincidence detection rate as a function of the delays
that are imposed. A simplified version of the experiment
of Pittman et al. is given in Figure 4, which is almost ex-
actly the same as Figure 1, except that the translations
are replaced by delays. Twins photons are created with a
plane wave pump by the process of SPDC in a nonlinear
crystal. A pinhole selects collinear twins with orthogonal

polarization. By using a birefringent crystal a delay ∆τV

is imposed on V -polarized photons. The collinear twins
fall on a 50%:50% beam splitter. In one of the output
channels of the beam splitter a delay ∆τH is imposed on
H-polarized photons. Coincidences are detected by the de-
tectors a and b in the output channels. The detectors in-
tegrate over space and time. In front of both detectors are
narrowband frequency filters and polarizers at an angle
of 45◦ with respect to both �εH and �εV . Since the basic
idea of the experiment is relying on the time dependence
of the field, we ignore the transversal-field distribution.
This is justified under the assumption that the transversal
parts of the transfer functions are independent of the po-
larization. As a consequence, the transversal profile does
not contain polarization information. Then the transver-
sal part of the problem does not affect the interference,
and introduces only an overall factor in the coincidence
detection rate. Therefore we simply write the two-photon
state in equation (2) as

|Ψ(t)〉 ∝
∫ t

−∞
dt′g(t′)â†

H(t′)â†
V (t′)|0〉, (21)

where â†
H(t) and â†

V (t) create at time t an H-polarized
and a V -polarized photon, respectively. The coincidence
detection amplitude in equation (9) is then given by

A = 〈0|Ê+
b (tb)Ê+

a (ta)|Ψ(ta)〉, (22)

where tb > ta.
To find the coincidence detection amplitude we express

the positive-frequency part of the electric-field operator
at the locations of the detectors a and b in terms of the
annihilation operators âH(t) and âV (t). For the positive-
frequency part of the electric-field operator at the loca-
tion of detector a at time ta, and detector b at time tb,
we write in the Heisenberg picture Ê+

a (ta) and Ê+
b (tb),

respectively. With free propagation in one dimension, the
operator â(z, t), which annihilates a photon at time t at
the position z, differs from the operator â(0, t) ≡ â(t) by
a delay in time. This follows from

â(z, t) =
1√
2π

∫
dω â(ω) exp (−iωt + ik(ω)z)

=
1√
2π

∫
dω â(ω) exp [−iω(t − z/c)]

= â(0, t − z/c), (23)

where â(ω) is the annihilation operator for a photon
with frequency ω in the output plane of the crystal, and
where we used the dispersion relation k(ω) = ω/c. Be-
cause the polarizers in front of the detectors are at 45◦,
both detectors detect photons with the polarization vector
�ε = (�εH + �εV )/

√
2. Therefore we only consider the com-

ponent of the electric-field operator in the 45◦ direction.
The distance between the detectors and the crystal along
both optical paths is z. Apart from the delay ∆τ , the
time for a photon to travel from the crystal to a detector
is z/c. Before being detected, the photon passes through
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the narrowband filter. The amplitude for the photon to
reside in the filter for a duration τ is proportional to f(τ),
the memory function of the filter. We have

Ê+
a (ta) =

∫ ∞

0

dτ f(τ) [âH(ta − z/c− ∆τH − τ)

+ âV (ta − z/c− ∆τV − τ)] ,

Ê+
b (tb) =

∫ ∞

0

dτ f(τ) [âH(tb − z/c− τ)

+ âV (tb − z/c− ∆τV − τ)] . (24)

These expressions are similar to the expressions in equa-
tion (13) that we used for the spatial interferometer. Then
the expression for the coincidence detection amplitude is
proportional to

A(ta, tb) =
∫
−∞

dt g(t)

× [f(tb − z/c− t)f(ta − z/c− ∆τV − t)

+f(tb − z/c− ∆τV − t)f(ta − z/c− ∆τH − t)] . (25)

The upper limit of the integration in equation (25) should
be the lower one of ta and tb. The time arguments of the
filter functions in equation (25) indicate the time delay of
the photons in the filters.

We consider the case that the pump beam is monochro-
matic with frequency ωp, and we write

g(t) = exp (−iωpt). (26)

Then we can neglect the dispersion in the crystal and use
the expression in equation (21) for the two-photon state.
The frequency filters are modelled by a Lorentzian with a
bandwidth α, and a center frequency that is equal to half
the pump frequency ωp, so that

f(τ) = exp (−ατ − iωpτ/2)Θ(τ). (27)

The step function Θ(τ) makes the memory function dis-
appear for negative τ , which reflects causality [14]. Insert-
ing the expressions for the pump profile and the memory
function of the filters into equation (25) gives the explicit
expression

A(ta, tb) =
i

2α
exp [−iωp(ta + tb − 2z/c− ∆τV )/2]

× [exp (−α|ta − tb − ∆τV |)
+ exp (iωp∆τH/2) exp (−α|ta − tb + ∆τV − ∆τH |)] .

(28)

The first term in equation (25) or equation (28) represents
the amplitude that detector a sees the V -polarized pho-
ton, and the H-polarized photon goes to detector b. This
term is maximal when ta − tb = ∆τV . The inverse situ-
ation that detector a sees the H-polarized photon and b
the V -polarized one is expressed by the second term. This

Fig. 5. Envelope of the coincidence detection rate R as a func-
tion of α(∆τH − 2∆τV ) for the temporal interferometer.

term is maximal when ta − tb = ∆τH − ∆τV . We as-
sume that the detection window is large compared with
the inverse bandwidth 1/α of the filters, so that the net
coincidence rate R is proportional to

∫ ∞
−∞ dtb|A(ta, tb)|2,

which gives the result

R ∝ 1 + (1 + α|∆τH − 2∆τV |) cos (ωp∆τH/2)

× exp (−α|∆τH − 2∆τV |). (29)

In Figure 5 the envelope of the coincidence detection
rate R is given as a function of the dimensionless param-
eter α(∆τH − 2∆τV ). Here the value of ∆τV is fixed, and
the value of ∆τH is varied. The envelope is filled with
interference fringes with frequency ωp/2. With this exper-
iment Pittman et al. show that it is not necessary for the
two photons of a twin to arrive at the beam splitter at
the same instant of time for interference to occur. Again
two amplitudes are of importance. The first is the ampli-
tude A(H → a; V → b) where detector a detects the H-
polarized photon, and detector b detects the V -polarized
photon. For the second amplitude A(H → b; V → a) it
is the other way around. The polarizers at 45◦ in front of
the detectors erase the information about the polarization
of the detected photon, so that interference between these
amplitudes can occur. Polarization information is also con-
tained in the difference in time between the two detection
events, because the photons of a twin are created at the
same instant of time. For interference with 100% visibility
to occur it is then necessary that the difference in arrival
time at the filters is the same for both amplitudes. When
∆τH = 2∆τV this requirement is fulfilled, so that there
is interference with 100% visibility, as can be seen in Fig-
ure 5. On the other hand, we see that then there is a
difference of ∆τV = ∆τH/2 in the total travel time of the
photons from the crystal to the filter for the two ampli-
tudes. This does not destroy the interference because these
amplitudes cannot be distinguished. The reason for this is,
that, although the photons of a twin are created at identi-
cal times, the absolute time at which a twin is created, is
undetermined, because the pump beam is monochromatic:
there is temporal entanglement. We also notice that for
one of the amplitudes the H-polarized photon arrives at
the filter before the V -polarized photon, while it is the
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other way around for the other amplitude. Again the po-
larizers erase this difference. The interference fringes are
a consequence of the fact that the pump beam changes
phase under translation in time. The filters erase the in-
formation about the creation time of a photon from the
observed detection time. The bandwidth α determines the
width of the envelope in the coincidence detection rate
when measured as a function of ∆τH . For the spatial inter-
ferometer the interference fringes arise because the pump
beam changes phase under a translation in the transversal
space, which is a consequence of the fact that the pump
beam is slightly tilted. The width of the envelope in the
coincidence detection rate for the spatial interferometer
depends on the radius of the pinhole in front of detector b.

There is one striking difference between the descrip-
tion of the temporal and the spatial entanglement. The
detectors integrate both over time and transversal space,
but in the temporal case the ordering of the detection
times of the photons is relevant, which is not the case for
the spatial variant. The coincidence detection amplitude
for tb > ta is different from the one where tb < ta, as
can be seen from equation (25), because the detection of
a photon puts an end to the evolution of the two-photon
state. On the other hand, this does not occur in the spatial
case, as we see in equation (14). There is no such order-
ing problem with the locations of detection �ρa and �ρb. In
order to clarify the analogy between spatial and tempo-
ral entanglement we have focussed on either the spatial or
the temporal aspect of the interferometer under consider-
ation. By using the general expression for the two-photon
state in equation (2) also more general experiments can
be described, where both the spatial and temporal entan-
glement is relevant.

5 Conclusions

We have proposed an interference scheme for studying the
spatial entanglement of twin photons. The spatial entan-
glement arises from the fact that the photons of a twin are
created at the same location in the crystal, while this loca-
tion itself is undetermined within the spot size of the pump
beam. Expressed in transversal momentum, this spatial
entanglement takes the form of transversal phase match-
ing. The photons of the twin are created with opposite po-
larization and the coincidence detection signal of the two
photons arises from a coherent superposition of two ampli-
tudes. An interference structure in the coincidence detec-
tion rate occurs as a function of a polarization-dependent
translation in the transversal direction. It is necessary that
the photons of a twin are spatially entangled for this in-
terference to occur.

The proposed interference scheme is the spatial ana-
logue of the interference scheme in an experiment by
Pittman et al. [9] which relies on the temporal entangle-
ment of the twin photons. Besides that the photons of a
twin are created at the same location in the crystal, they
are also created at the same instant of time. The exact
creation time of the twin itself is undetermined within the
duration of the pump pulse. This implies that the two-
photon state is entangled in time, or, equivalently, in lon-
gitudinal position along the propagation direction. In the
experiment of Pittman et al. the interference occurs as a
function of a polarization-dependent time delay.

We give a description of the proposed interference
scheme in a form where the analogy and the difference
with its temporal counterpart is best visible. We believe
that this comparison elucidates the role of both types of
entanglement.

This work was supported by the “Stichting voor Fundamenteel
Onderzoek der Materie” (FOM), and the European Union un-
der the IST-ATESIT contract.
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